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stoichiometry are obvious (see, for example, Allpress, 
1972). 
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The temperature dependence of the integrated thermal diffuse scattering (T.D.S.) surrounding Bragg 
reflexions is discussed, with particular reference to cryogenic applications. Detailed calculations of the 
T.D.S. and its ratio to the Bragg intensity are presented for NaCI over the range 0 to 800°K. The 
T.D.S. includes not only the one-phonon contribution but also multiphonon processes. The temperature 
dependence of the T.D.S.-to-Bragg ratio is shown to fall off more quickly at low temperatures than 
the Debye-Waller exponent values. Some insight is gained into the importance of multiphonon pro- 
cesses, and it is concluded that there is much to be gained both in the reduction of T.D.S. and in the 
increase in intensity of higher-order reflexions by cooling to liquid-nitrogen temperatures. 

1. Introduction 

There is a growing interest in the application of cryo- 
genic techniques (Coppcns, 1972) to cool a single crys- 
tal sample which is being studied by X-ray diffraction. 
Two of the principal reasons for cooling are to increase 
the intensity of the weaker reflexions and to reduce the 
thermal diffuse scattering (T.D.S.) corrections which 
have to be made to all the observed Bragg intensities. 
These corrections may be large at room temperature 
but the difficulty of making them for most crystals has 
led to a lack of confidence in current procedures. In 
addition, the temperature dependence is considered only 
in the high-temperature limit (e.g. Warren, 1969, Jen- 

nings, 1970) and as a result there are no reliable estimates 
of the reduction in the T.D.S. to be expected on cooling 
to cryogenic temperatures. Hence in the following para- 
graphs this temperature dependence is discussed and 
accurate figures for the dependence of the (integrated) 
T.D.S. surrounding Bragg peaks are shown for NaCl. 
This substance has been widely studied by crystallog- 
raphers and is used here as a test material because good 
thermal data are available. Its Debye temperature is al- 
most 300 °K. 

2. The thermal diffuse scattering 

The starting point for the calculation is the numerical 
technique of Reid & Smith (1970a) used to find the 
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total phonon scattering at any point in reciprocal space. 
As a by-product of their calculation, numerical values 
for the integrated diffuse scattering over a spherical 
region of radius r surrounding a Bragg peak are ob- 
tained. The integrated one-phonon scattering by pho- 
nons with a (small) wave vector within this region is 
obtained and also the contribution from all multipho- 
non processes. Such processes may include any number 
of these small wave vectors (2, 3, 4 . . . )  as well as those 
processes which involve, in a sample over the whole 
Brillouin zone, two or more larger wave vectors whose 
sum exactly equals a reciprocal-lattice vector. Strictly 
speaking this procedure overestimates the multiphonon 
contribution because the sum of the wave vectors of the 
small phonons will sometimes be outside the spherical 
region. However the multiphonon terms increase ra- 
pidly when very small wave vectors are involved and 
this leads to most of the multiphonon scattering coming 
from processes where the sum of the wave vectors in- 
volved lies within the spherical region. An integration 
shows that over 80% of the two-phonon scattering 
comes from the region of interest and about half of the 
three and four-phonon scattering. In practice this in- 
troduces no appreciable error since, if multiphonon 
processes are sufficiently important for the approxi- 
mation to be poor, it is unlikely that there will be any 
interest in the Bragg peak. The T.D.S. will be at least 
as large as the Bragg scattering and the Debye-Waller 
factor will most probably have reduced the intensity to 
below the normal observable limit. 

In general the best eigendata are used in the numeri- 
cal calculation of the next section but within the region 
of the sphere the acoustic branches are assumed linear 
and isotropic and the optic branches fiat. These approxi- 
mations are almost always made in integrated T.D.S. 
calculations (Willis, 1969) and should introduce very 
little error for NaC1. 

The important features of the calculation are that 
multiphonon processes are included and the tempera- 
ture dependence of the scatter is not approximated. 
Exact expressions are given by Reid & Smith (1970a) 
but the results can be understood if one keeps in mind 
that they lead to a temperature dependence of the ob- 
served scatter of the form 

l oc l f l  2 exp [ -2W(T)]  exp [KZ{a+bTrzJ(T)}]  (1) 

missing out the sums over different atom types. Equa- 
tion (1) gives the most important contribution which 
comes from the small-wave-vector phonons, f is the 
scattering factor of the atom, W ( T )  the Debye-Waller 
term, K the scattering vector (whose magnitude is 
(h 2 + k 2 + l) 1/2 in units of 2to/lattice constant), Tthe tem- 
perature and a and b known constants determined prin- 
cipally by elastic data. J ( T )  is a definite integral given 
by 

1 l ~' x d x  rz 
.:(T)= 7 o (e x -  1) '  yoc k B T '  (2) 

and whose value increases monotonically from 0 to 1 as 
T goes from 0 °K to high-temperature limit (Abramo- 
vitz & Stegun, 1965). If the exponential of equation (1) 
is expanded, the first term gives the Bragg scatter and 
the next term the one-phonon scatter. Therefore the 
one-phonon contribution will be 

11oclf12 exp [ - 2 W ( T ) ] K Z { a + b T r ~ J ( T ) }  (3) 

high > ifl~ exp [ - 2 W ( T ) ] K Z b r z T .  (4) 
temp. 

The usual form quoted in the high-temperature limit 
is given by equation (4). 

Although the temperature dependence of equation 
(1) is determined by the term T J ( T ) ,  the crucial pa- 
rameter which governs whether there will be a depar- 
ture from the high-temperature limit is the radius of 
the sphere, rz. In this sense it is the modes at the bound- 
ary of the sphere which determine the temperature de- 
pendence and not those near the centre. For the cal- 
culations, temperature-dependent Debye-Waller fac- 
tors (Reid & Smith, 1970b) and lattice constants were 
used at all temperatures. Below room temperature, the 
temperature dependence of the elastic constants and 
optic frequencies was also taken into account. 

3. Numerical results 

Choosing the volume of the sphere to occupy 1/500th 
of the Brillouin zone gives the ratio of (IT.o.s./IBragg) 
shown in Fig. 1 for a range of lengths of scattering vec- 
tor and for three temperatures. At room temperature, 
the variation with K for the smaller K values (less than 
8 x 2reid, where d is the lattice constant) nearly follows 
the square law showing that one-phonon processes are 
dominant for this volume. For higher-index reflexions, 
multiphonon effects are important even at room tem- 
perature. However by the time the temperature has 
been reduced to near that of liquid nitrogen, multi- 
phonon effects have been virtually frozen out over the 
whole range of K values. Nevertheless, there is still a 
substantial reduction in the T.D.S.-to-Bragg ratio to 
be gained by reducing the temperature to the liquid- 
helium level. This is emphasized in more detail in Fig. 
2 which shows the temperature dependence of three 
typical peaks covering the K range over temperatures 
from 0-800°K. At higher temperatures, the upward 
curvature which destroys the linearity is again due to 
multiphonon effects. As a rough guide, ignoring the 
multiphonon contribution is likely to lead to an under- 
estimate of the integrated T.D.S. intensity by at least 
20 % if the one-phonon scatter is 40 % of the Bragg 
intensity. It has sometimes been suggested that the 
ratio of T.D.S. to Bragg intensity involves similar tem- 
perature factors to the Debye-Waller B terms which 
occur in the Debye-Waller exponent, 

W(T)  = B sin 2 0[~ 2 . 
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Equation (3) shows that the T.D.S.-to-Bragg ratio fails 
away considerably faster than the B terms at low tem- 
peratures because of the reduction of the integral J ( T ) ,  
and this is borne out in Fig. 2. 

It is also of interest to look individually at the varia- 
tion of the Bragg intensity and the quite complicated 
variation of the T.D.S. as a function of temperature. 
These are shown in Fig. 3(a) and (b) each expressed as 
a percentage of their values at 295 °K for a range of 
Bragg reflexions along the [100] axis. For the low-index 4oo 
reflexions there is a continuous increase with tempera- 
ture of the integrated T.D.S. owing to the increasing 300 
occupation numbers of the lattice modes. For the high- 
index peaks the occupation numbers initially increase ,'L:L °/, 
the scattering below liquid-nitrogen temperatures but 2oo 
then the large Debye-Waller term takes over, giving 
rise to a maximum in the scattering. Nearer the melting lO0 
point the multiphonon terms start to overcome even 
the Debye-Waller term and the intensity begins to rise 
again. If one goes to many times the Debye temperature, o 
by which time NaC1 has melted but many materials are 
still solid, the multiphonon terms dominate for all 
peaks and the diffuse scattering rapidly increases non- 
linearly with temperature. The same trends are found 
with Bragg reflexions in other directions. Fig. 3(b) 
shows the remarkable gain in the Bragg intensity of 
higher-order reflexions at low temperature. 

The restriction of the foregoing discussion to one 
particular size of sphere has no special significance. 
The larger the sphere, the more important are multi- 
phonon effects at a given temperature but equation (1) 4oo 
suggests how this can be taken into account. Since a is 
small and J ( T )  is not strongly dependent on r= for the 
range of interest, 

( T.D.S.~ 
In 1 + Bragg/ ocr: (5) 

giving the scaling to different sphere sizes within the 
limits of the approximations used. In practice, equation 
(5) was tested up to a sphere occupying 1/100th of the 
zone and was found to be accurate to a few percent, 
even for the highest-index reflexions at room tempera- 
ture where the T.D.S. intensity exceeded the Bragg in- 
tensity. 

In actual practice, T.D.S. corrections to observed 
intensities are made by first subtracting a background 
obtained from the experimentally measured T.D.S. out- 
side the Bragg peak and then subtracting the calculated 
value of the T.D.S. that lies above the background 
under the Bragg peak. This procedure saves having to 
estimate the scattering from optic modes, of which 
there may be up to several thousand in crystals with 
large unit cells, and other slowly varying quantities 
such as the Compton scattering. As a result the usual 
T.D.S. correction factor ~ (Willis, 1969) is smaller than 
the T.D.S.-to-Bragg ratio discussed so far by the 
amount of the background scattering. Taking the aver- 
age background to be represented by the scattering at 

the edge of the spherical region, Willis (1969) considers 
the one-phonon scattering and obtains 

r 
~ ~= 0"67/T'D'S"~ (6) 

\ Bragg ! " 

Y 
_ ~ /  . - 5K . 

4 8 12 
K=(h2 +k2 +12) : 

Fig. 1. NaCI. The ratio of (IT.D.S./IBr,gg) expressed as a per- 
centage for a range of scattering lengths K (in units of 2n/d) 
and for the temperatures 295, 75 and 5°K. The T.D.S. is 
integrated over a sphere in reciprocal space whose radius 
extends 0.124 to the (100) zone boundary. The shaded region 
represents the anisotropy that arises from true multi- 
phonon processes which exactly sum to a reciprocal-lattice 
vector. 
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Fig.2. The temperature dependence of the ratio (IT.D.S./1B,ag=) 
for the reflexions 14,0,0, 800 and 200 calculated under the 
conditions given in Fig. 1. Each ratio is expressed as a per- 
centage of its value at 295 °K. The line of crosses shows in a 
similar way the low-temperature variation of the Debye- 
Waller B terms. 
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By taking the average scattering vector to go to a 
spherical shell surrounding the region of integration, 
equation (5) can be used to include multiphonon con- 
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Fig. 3. The temperature dependence of (a) the T.D.S. and (b) 
the Bragg reflexions for the h00 reflexions of NaCI from 
200 to 14t0,0. Each is expressed as a percentage of its value 
at 295 °K. Very similar results are obtained for reflexions lying 
in other directions. 

tributions to the background. In this case 

{T.D.S.] _ 0.16 {T.D.S.] 2 
a = 0"74 k Bragg / \ Bragg ] 

{T.D.S.~ 3 
+ 0 . 0 4 \ B r a g g !  + " "  (7) 

The first term is larger than that of equation (6) be- 
cause the region over which the background is aver- 
aged is slightly further from the Bragg peak. The other 
terms subtract off some of the multiphonon contribu- 
tions to the calculated T.D.S.-to-Bragg ratio and hence 
help to reduce the multiphonon effects in the integrated 
intensity. The important point as far as the temperature 
dependence is concerned is that to a good approxima- 
tion, especially at lower temperatures, the temperature 
dependence of the usual T.D.S. correction factor (ct) is 
the same as the temperature dependence of the T.D.S.- 
to-Bragg ratio. 

In conclusion it can be seen that there is much to be 
gained by cooling to liquid-nitrogen temperatures 
where the ratio of the T.D.S. to Bragg scattering is 
generally reduced by a factor of 5 and also the higher- 
index reflexions are increased in intensity by at least this 
amount. Multiphonon effects are effectively frozen out. 
The main advantage of further cooling to liquid helium 
is another reduction by at least a factor of 5 in the 
T.D.S. although there is not much gain in Bragg inten- 
sity. An appropriate scaling of these results can be made 
to other materials whose Debye temperatures are not 
near the NaCl value of approximately room temperature. 
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